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Abstract –  

Although a shield tunneling machine should 

excavate a tunnel along its planned alignment, 

deviations occur between the planned alignment and 

the actual result. In this case, the deviating shield 

machine should return to the planned alignment 

gradually. However, because controlling the shield 

machine is difficult and time-consuming, and 

excavation managers and operators are aging, their 

skills may be lost in the near future. Artificial 

intelligence is expected to play an important role in 

automating the operation of shield tunneling 

machines, but the method proposed by Kubota et al. 

and the methods of related studies could not 

automatically calculate optimum operation 

parameters for curved sections of the planned 

alignment. Therefore, in this research, the purpose is 

to develop an autopilot model, which is a method to 

automatically calculate optimal operation 

parameters of the shield machine for straight and 

curved sections of the planned alignment, based on 

the method proposed by Kubota et al. Besides, as a 

result of applying the autopilot model to the data of a 

previously constructed tunnel, optimal operation 

parameters could be automatically calculated in the 

section where the tunnel longitudinal gradient is 

constant.  
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1 Introduction 

Shield tunneling is a tunnel construction method 

using excavation machines called shield tunneling 

machines, and this method is often used for the 

construction of underground infrastructure, such as 

sewers and subways [1]. Although a tunnel should be 

excavated along the planned alignment by shield 

tunneling, deviations occur between the planned 

alignment and the actual result [2]. When this happens, 

the deviating shield machine should return to the 

planned alignment; however, an abrupt direction change 

may cause meandering and cracking [3]. In order to 

gradually decrease the deviation without creating other 

problems, a target alignment should be generated 

(Figure 1). However, controlling the attitude and 

position of shield machines is difficult and time-

consuming. Besides, as excavation managers and 

operators are aging, their skills may be lost in the near 

future [4]. Thus, it is necessary to automate the 

operation of shield machines with the same or better 

accuracy than that of skilled engineers and to improve 

the accuracy and productivity of tunneling. 

Figure 1. Conceptual diagram of tunnel construction 

In order to automate the operation of the shield 

machine, expectations have been increased for artificial 

intelligence (AI) to make predictions based on machine 

learning of huge amounts of data, and research on 

methods using AI has been conducted. On the other 

hand, the methods of Iwashita et al. [5], Zhou et al. [6], 

and Sugiyama et al. [7] have the problem that operation 

parameters for excavating along the target alignment are 

determined manually by repeated prediction and 

evaluation. In addition, Kubota et al. proposed a method 

to automatically calculate optimal operation parameters 

of the shield machine for straight sections of the 

planned alignment [8]. Although there are two types of 

the planned alignment, one is straight and the other is 

curved, the proposed method cannot be applied to 

curved sections of the planned alignment. Therefore, in 

this research, the purpose is to develop an autopilot 

model that automatically calculates optimal operation 

parameters of the shield machine for straight and curved 

sections of the planned alignment, based on the method 

proposed by Kubota et al. [8]. 
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2 Literature review 

To automate the operation of the shield machine, a 

method to predict the position and attitude of the shield 

machines using AI has been proposed. In this chapter, 

we summarize each method and show the position of 

this research.  

2.1 Related works 

In order to automate the operation of the shield 

machine, expectations have been increased for artificial 

intelligence (AI) to make predictions based on machine 

learning of huge amounts of data, and research on 

methods using AI has been conducted. Although there 

are two types of the planned alignments, one is straight 

and the other is curved, Iwashita et al. proposed a 

method for predicting the shield machined direction for 

straight sections of the planned alignment and applied it 

to actual construction data [5]. By repeatedly inputting 

optimum operation parameters and evaluating the 

prediction results, this method was able to determine 

optimum operation parameters without relying on the 

experience of the operator, and it was confirmed that the 

accuracy of the tunneling was improved. Zhou et al. 

proposed a method to predict the position and attitude of 

the shield machine and applied it to the previously 

constructed tunnel data [6]. They reported the prediction 

results of this method can be expected to be used by 

operators to manually adjust the position and attitude of 

the shield machine. Sugiyama et al. proposed a method 

for judging the timing of shield jack operations to 

propel the shield machine [7]. This method makes it 

possible to give operation instructions at the appropriate 

time according to the excavation conditions. The 

authors proposed a method for automatically calculating 

optimum operation parameters for straight sections of 

the planned alignment and have applied the method to 

the previously constructed tunnel data [8].  

In order to improve the accuracy and productivity of 

tunneling, these methods are required to automatically 

calculate operation parameters of the shield machine 

that are predicted to excavate along the target alignment 

and to use the results in the preparation stage of 

excavation instructions. However, Sugiyama et al.’s 

method [7] could not calculate optimal operation 

parameters, and the methods of Iwashita et al. [5] and 

Zhou et al. [6] were determined by trial and error 

through repeated prediction and evaluation. The 

methods of Kubota et al. [8] and Iwashita et al. [5], as 

shown in Figure 2, constructed a machine learning 

model that predicts the amount of difference in the 

deviation between the planned alignment and the shield 

machine position, and the shield machine position is 

predicted by integrating the difference between the 

predicted deviations. On the other hand, in curved 

sections of the planned alignment, the amount of 

difference in deviation differs depending on the 

curvature, even if the amount of difference in the shield 

machine position before and after an operation is the 

same. Therefore, these methods using the amount of 

difference in deviation as the objective variable has the 

problem that the shield machine position cannot be 

predicted accurately in curved sections of the planned 

alignment.  

 

Figure 2. Conceptual diagram of the difference 

between deviation and predicted section 

2.2 Objective of this research 

In order to improve the accuracy and productivity of 

tunneling by using the method for preparing excavation 

instructions, the purpose of this research is to develop a 

method for automatically calculating optimal operation 

parameters for straight and curved sections of the 

planned alignment, based on the method of Kubota et al. 

[8]. The method uses a machine learning model that 

predicts the amount of difference in the position and the 

azimuthal of the shield machine before and after an 

operation and automatically calculates optimal 

operation parameters. Therefore, the method solves the 

problem of Iwashita et al. [5], Zhou et al. [6], and 

Sugiyama et al. [7] in automatically calculating optimal 

operation parameters of the shield machine and the 

problem of Kubota et al. [8] and Iwashita et al. [5] in 

applying proposed methods to curved sections of the 

planned alignment. In addition, the proposed method 

makes it possible to almost automate the creation of 

excavation instructions, contributing to the 

improvement of tunneling accuracy and productivity, 

and is considered to be a method leading to the 

automation of the shield machine operation.  

3 Methodology 

3.1 Autopilot model 

In this research, the proposed method automatically 

calculates optimal operation parameters of the shield 

machine for straight and curved sections of the planned 

alignment and uses the prediction results in the 

preparation of the excavation instructions. The overall 

picture of the proposed method is shown in Figure 3. 
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The input data to the proposed autopilot model are 

sensing data as explanatory variables, and target 

alignment data. A total of 47 sensing data items were 

selected as explanatory variables, including operation 

parameters of the shield machine, items indicating the 

attitude of the shield machine such as jack stroke and 

pitching, and items indicating the ground solidity such 

as propulsive force, articulation pressure, and cutter 

power. Next, the autopilot model consists of a direction 

prediction model that predicts the shield machine 

position using machine learning methods, and an 

operation parameter optimization model that calculates 

optimal operation parameters of the shield machine. The 

predicted positions of the shield machine using the 

machine learning model are the horizontal, vertical, and 

azimuthal deviation. The horizontal, vertical, and 

azimuthal deviations are the deviations in the horizontal, 

vertical, and azimuthal directions between the tip 

position of the shield machine and the planned 

alignment, as shown in Figure 4. The output data from 

the autopilot model includes operation parameters that 

are predicted to excavate along the target alignment and 

the predicted position that the shield machine will 

achieve. This output data is used as the appropriate 

values for operation parameters in the excavation 

instructions.  

 
Figure 3. Conceptual diagram of an autopilot model 

 

The autopilot model is intended to assist in the 

preparation of excavation instructions that include 

appropriate values for operation parameters. At the 

construction site, the operator controls the shield 

machine to get closer to the instructions by carrying out 

manual surveys for every 4-6 rings of excavation and 

preparing the excavation instructions based on the 

results. Therefore, it is assumed that the developed 

model will be applied to the next construction section, 

which is 1-6 rings ahead, as indicated in the excavation 

instructions. 

 

Figure 4. Concept of deviation 

3.2 Direction Prediction Model 

The direction prediction model that predicts the 

difference in the position and azimuthal before and after 

the shield machine operation is proposed for application 

to straight and curved sections of the planned alignment. 

In the direction prediction model, a coordinate system is 

created based on the running direction of the shield 

machine in both plan and longitudinal views, as shown 

in Figure 5. The difference in the position of the shield 

machine at each coordinate is performed by machine 

learning. Next, the shield machine position can be 

predicted by integrating the difference in shield machine 

position after unifying the coordinate systems of the 

predicted points with the coordinate system of the map.  

 

Figure 5. Conceptual diagram of the difference 

between deviation and predicted section 
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Machine learning is a field of AI that predicts the 

shield machine position using a regression method 

based on machine learning, which predicts a real-valued 

objective variable from the explanatory variable. Many 

machine learning regression methods have been 

developed, such as Support Vector Regression (SVR) [9] 

and Long Short-Term Memory (LSTM) [10].  

The sensing data as explanatory variables in this 

research are time-series data measured during 

excavation that is assumed to be susceptible to 

disturbances. For this reason, we conducted a 

comparative verification using SVR, which is reported 

to perform well in the presence of noise, and LSTM, 

which is reported to perform better than Recurrent 

Neural Network (RNN) for predicting time-series data 

[11]. As a result of the comparative verification shown 

in Section 4, this study adopted SVR, which can predict 

the position of the shield machine with high accuracy.  

When constructing a machine learning model, if the 

sensing data are used directly, the performance may be 

adversely affected by noise and the features may not be 

captured. Therefore, as preprocessing, we applied the 

processes of differencing and normalization. In the 

differencing process, the sensing data that represents the 

meaningful integration value of data difference are 

converted to a difference from the data obtained during 

the previous measurement. In the normalization process, 

a linear regression equation, which transforms the 5% 

and 95% values of each sensing datum as −0.4 and 0.4, 

was used. To achieve a range of −0.5 for the lower limit 

and 0.5 for the upper limit, data below the lower limit of 

−0.5 were set to −0.5, and data above the upper limit of 

0.5 were set to 0.5.  

This model predicts the difference in the position 

and the azimuth concerning the running direction of the 

shield machine by inputting sensing data as explanatory 

variables at the current position of the shield machine. 

However, since the difference in the position is a value 

in the coordinate system at each predicted point, the 

coordinate system must be unified in order to obtain the 

position of the shield machine. Therefore, the shield 

machine position and deviation between the planned 

alignment can be predicted by integrating the difference 

in the shield machine position after unifying the 

coordinate systems of the predicted points with the 

coordinate system of the map.  

For the developed model, the data measured for each 

5 cm jacking stroke of the shield machine was used. 

This is based on the fact that the minimum height from 

the faceplate of the shield machine to the cutter bit is 

typically about 5 cm, which is the minimum height that 

contributes to directional control.  

3.3 Operation parameter optimization model 

The operation parameter optimization model 

automatically generates operation parameters to 

excavate along the target alignment for each ring using 

an optimization method. The main optimization 

methods include genetic algorithms [12] and the particle 

filter method [13]. The characteristic required for the 

method to be adopted is the need to prevent delays in 

construction due to a large analysis time. This study 

adopted the particle filter method, which has low 

fluctuations in analysis time, depending on the 

experimental case, and high processing speed. 

The particle filter method estimates the unknown 

parameters necessary for reproducing the observation 

data from among the candidate optimal values generated 

by approximating the shape of the probability 

distribution using multiple particles (Figure 6). This 

method can be applied to models where the relationship 

between the unknown parameters and the observation 

data is nonlinear. Although the accuracy improves with 

the number of particles, the amount of computation also 

increases with the number of particles.  

 

Figure 6. Conceptual diagram of particle filter 

Therefore, the unknown parameters are operation 

parameters and the observation data are deviations of 

the target alignment. Since it is common practice to use 

all shield jacks, we decided to use all of them in this 

model as well. Also, because azimuthal deviations of 

the target alignment are determined by horizontal and 

vertical deviations of the target alignment, the 

observation data are horizontal and vertical deviations 

of the target alignment. Optimal operation parameters 

are the one that comes closest to reproducing the 

horizontal and vertical deviations of the target 

alignment, which is the observation data, among the 

candidate optimal values.  

On the other hand, in order to predict the shield 

machine position, explanatory variables other than 

operation parameters must also be input into the 

direction prediction model. In the case of calculating 

optimal operation parameters, the front of the tunnel 

face is targeted, it is necessary to complement the 

sensing data as explanatory variables. Among these, the 

jack stroke data was complemented based on the 

candidate optimal operation parameters and the data of 
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the jack stroke measured 1 ring earlier. The sensing data 

used as explanatory variables other than operation 

parameters and jack stroke were complemented with the 

same data measured 1 ring earlier, assuming that the 

influence of the ground was greater than that of 

operation parameters.  

4 Evaluation of Prediction Accuracy 

In this Section, in order to predict the arrival 

position of the shield machine with high accuracy, the 

machine learning model used to construct the direction 

prediction model is examined and the prediction 

accuracy is evaluated. In this verification, we used the 

data of the “A” project, which was constructed using a 

slurry shield machine to reduce the damage caused by 

flooding. There are two types of geology to be 

excavated in the “A” project. In general, it is known that 

the behavior of the shield machine differs depending on 

the ground conditions. Therefore, the direction 

prediction model was constructed for each geological 

feature, and the prediction accuracy was evaluated using 

sensing data measured during excavation of the same 

geological feature. As shown in Section 2, we used SVR 

and LSTM as machine learning models to make 

predictions and compare their accuracy. The sensing 

data used is shown in Table 1, and the analysis 

procedure is as follows.  

Table 1. Sensing data used in the analysis 

Category Geology I Geology II 

Construction 

section 

Ring Nos. 

351-866 

Ring Nos. 

1117-1616 

Geological 

classification 

Alternating strata 

of diluvial layer, 

sandy soil and, 

gravel soil 

Alternating strata 

of diluvial layer 

and gravel soil 

First, the sensing data were divided into training and 

validation data sets, and the direction prediction model 

was constructed. Next, the validation data sets were 

input into the direction prediction model, and the 

calculated predictions were compared with the 

measured value. However, assuming the developed 

model management, the arrival position of the shield 

machine was predicted 1-6 rings ahead compared with 

the section where a manual survey was conducted in the 

section for validation data sets (Figure 7). As shown in 

Figure 8, 80 % of the sensing data were used as training 

data and 20 % as validation data, and the data were 

assigned roles so that both data contained data from 

straight and curved sections of the planned alignment.  

We used the Root Mean Squared Error (RMSE) 

shown in Equation (1) as the evaluation index for 

prediction accuracy. 

 

Figure 7. Outline of the section where the 

verification is conducted 

  

Figure 8. Training data sets and verification data 

sets 

𝑅𝑀𝑆𝐸(𝑖, 𝑗, 𝑘)

= √
1

𝑁
∑ (𝑃(𝑖, 𝑗, 𝑘,𝑚) − 𝑀(𝑖, 𝑗, 𝑘,𝑚))2

𝑘
 

(1) 

where 

RMSE(i,j,k): RMSE aggregated under the conditions 

of i, j and k 

N: Number of rings predicted  

P(i,j,k,m): Prediction value  

M(i,j,k,m): Measured value 

i: Difference between the predicted ring number and 

ring number where manual surveying was conducted (i 

= 1, 2, 3, 4, 5, 6) 

j: Type of deviation (j = 1 for horizontal deviation, j 

= 2 for vertical deviation, j = 3 for azimuthal deviation) 

k: Geological classification (k = 1 for Geology I, k = 

2 for Geology II) 

m: Predicted ring number.  

RMSE is an index of the difference between 

predicted and measured values squared, averaged, and 

then aggregated, and the smaller the values, the better 

the performance. RMSE was adopted because it has the 

same unit as the predicted value, making it easier to 

evaluate. Also, the shield machine is constantly 

excavating an extra 20 mm around the perimeter of the 

tunnel, which can have a negative impact on the 

prediction accuracy. Taking the extra excavation into 

account, the target value was to predict the RMSE 

within 20 mm for both horizontal and vertical deviations. 

The analysis results of horizontal, vertical, and 

azimuthal deviations of 1-6 rings ahead are shown in 
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Figures 9 - 11. The smaller the RMSE, the better the 

performance. For the same experimental case, in most 

cases, the SVR models were found to be more accurate 

than the LSTM models in predicting horizontal, vertical, 

and azimuthal deviations. The SVR models were able to 

predict the horizontal and vertical deviations within 1-6 

rings ahead with an RMSE accuracy of 20 mm or less.  

   

Figure 9. Results of horizontal deviations 

  

Figure 10. Results of vertical deviations 

  

Figure 11. Results of azimuthal deviations 

To consider the difference in prediction accuracy 

among the machine learning models, Figure 12 shows a 

conceptual diagram of the prediction methods of SVR 

and LSTM. SVR predicts the deviation based on the 

previously obtained sensing data, while LSTM predicts 

the deviation by maintaining a back-and-forth 

relationship between the sensing data. From these 

results, it can be concluded that the prediction accuracy 

of SVR exceeded that of LSTM in the sensing data of 

the actual tunnel targeted in this verification because the 

influence of the previous sensing data contributed more 

to the prediction of the shield machine position than the 

influence of the back-and-forth relationship between the 

sensing data. Therefore, in this research, SVR was 

adopted as the machine learning model used to construct 

the direction prediction model. 

 

Figure 12. Conceptual diagram of prediction 

method of SVR and LSTM models 

5 Verification Experiment in Previously 

Construction Section 

To show the effectiveness of the developed autopilot 

model, it was verified whether the deviation between 

the predicted position of the shield machine and the 

target alignment position was smaller than the actual 

measured deviation. The sensing data used is shown in 

Table 2 and the analysis procedure is as follows. 

Table 2. Test data sets used in the analysis 

Category Geology I Geology II 

Construction section 
Ring Nos. 

867-1048 

Ring Nos.  

1632-1841 

Number of manually 

surveyed section 

(longitudinal gradient 

to predicted section) 

32 (Constant) 

2 (Change) 

49 (Constant) 

0 (Change) 

First, the direction prediction model was constructed 

using the sensing data as training data sets. Next, the 

position of the shield machine was predicted using 

optimal operation parameters, which were calculated by 

inputting horizontal and vertical deviations of the target 

alignment into the autopilot model. The developed 

autopilot model was applied to the next 1-6 rings 

compared with the sections where manual surveys were 

conducted in the prediction section. In the section used 

as test data, the tunnel longitudinal gradient from 

manually surveyed sections is constant in some sections 

and is changing in others. Therefore, the evaluation was 

divided into two sections: one where the tunnel 

longitudinal gradient is constant (Case 1) and the other 

where it is changing (Case 2). The RMSE results for 

horizontal and vertical deviations were evaluated 

because the input data to the autopilot model is the 

target alignment for horizontal and vertical deviations. 

The analysis results are shown in Figures 13 - 16.  
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Figure 13. Results of horizontal direction (Case 1) 

  

Figure 14. Results of vertical direction (Case 1) 

  

Figure 15. Results of horizontal direction (Case 2) 

  

Figure 16. Results of vertical direction (Case 2) 

In the section where the tunnel longitudinal gradient 

is constant (Case 1), the predicted RMSE is smaller than 

the actual RMSE. On the other hand, in the vertical 

results of the experimental case, where the tunnel 

longitudinal gradient is changing (Case 2), the predicted 

values are larger than the actual values. 

In the section where the tunnel longitudinal gradient 

is changing, it is necessary to change the pitching, 

which is the angle between the central axis and the 

horizontal axis of the shield machine shown in Figure 

17. In actual practice, the angle of pitching is varied by 

changing the middle fold angle of the shield machine. In 

contrast, since the pitching data in the predicted section 

of the proposed method is complemented with the same 

sensing data measure 1 ring earlier, it is assumed that 

the angle of pitching needs to be changed according to 

candidate optimal operation parameters.  

  

Figure 17. Pitching overview (longitudinal view) 

In order to show the validity of this assumption, the 

results of Case 2 validation are shown in Figures 18 - 19, 

switching only the pitching data from the same data 

measured 1 ring earlier to data measured in the 

excavation of the predicted section. By using the 

measured pitching data, the RMSE of vertical direction 

was reduced, and operation parameters were 

automatically calculated to predict that the excavation 

would be closer to the target alignment than the actual 

results. Therefore, in sections where the tunnel 

longitudinal gradient is changing, correcting pitching 

data considering the impact of operation parameters 

may be effective in calculating operation parameters for 

excavating along the target alignment. In order to 

expand the method to apply to the section where the 

tunnel longitudinal gradient is changing, we consider 

that a machine learning model that predicts the amount 

of pitching change that occurs in the process of shield 

machine operation should be constructed and introduced 

into the proposed method to address this problem. 

  

Figure 18. Results of horizontal direction (Case 2: 

revision) 
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Figure 19. Results of vertical direction (Case 2: 

revision) 

6 Conclusion 

This paper proposed a method to automatically 

calculate optimal operation parameters of the shield 

machine for straight and curved sections of the planned 

alignment and to use the prediction results in the 

preparation of excavation instructions by using machine 

learning and optimization method, in order to improve 

the excavation accuracy and productivity of tunnel 

construction and to contribute to the automation of the 

shield machine operation. In the section where the 

tunnel longitudinal gradient is constant, operation 

parameters for excavating closer to the target alignment 

than the measured alignment could be automatically 

calculated by applying the proposed method to the 

sensing data from a previously constructed actual tunnel. 

On the other hand, in the section where the tunnel 

longitudinal gradient is changing, operation parameters 

for excavating along the target alignment could not be 

calculated.  

As future work, it is necessary to develop and 

introduce into the proposed method a method for 

predicting pitching data according to candidate optimal 

operation parameters and to extend the proposed 

method to apply to the section where the tunnel 

longitudinal gradient is changing. Besides, we need to 

apply the proposed method to unexcavated sections of 

tunnel construction in progress. The accuracy of the 

developed model will be improved in the future. 
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